Experimental realization of decoherence-free subspace in neutron interferometry.
نویسندگان
چکیده
A decoherence-free subspace (DFS) is an important class of quantum-error-correcting (QEC) codes that have been proposed for fault-tolerant quantum computation. The applications of QEC techniques, however, are not limited to quantum-information processing (QIP). Here we demonstrate how QEC codes may be used to improve experimental designs of quantum devices to achieve noise suppression. In particular, neutron interferometry is used as a test bed to show the potential for adding quantum error correction to quantum measurements. We built a five-blade neutron interferometer that incorporates both a standard Mach-Zender configuration and a configuration based on a DFS. Experiments verify that the DFS interferometer is protected against low-frequency mechanical vibrations. We anticipate these improvements will increase the range of applications for matter-wave interferometry.
منابع مشابه
Quantum Computers and Decoherence: Exorcising the Demon from the Machine
Decoherence is the main obstacle to the realization of quantum computers. Until recently it was thought that quantum error correcting codes are the only complete solution to the decoherence problem. Here we present an alternative that is based on a combination of a decoherence-free subspace encoding and the application of strong and fast pulses: “encoded recoupling and decoupling” (ERD). This a...
متن کاملPhase-noise protection in quantum-enhanced differential interferometry
Differential interferometry (DI) with two coupled sensors is a most powerful approach for precision measurements in the presence of strong phase noise. However, DI has been studied and implemented only with classical resources. Here we generalize the theory of differential interferometry to the case of entangled probe states. We demonstrate that, for perfectly correlated interferometers and in ...
متن کاملRealization of universal ion-trap quantum computation with decoherence-free qubits.
Any residual coupling of a quantum computer to the environment results in computational errors. Encoding quantum information in a so-called decoherence-free subspace provides means to avoid these errors. Despite tremendous progress in employing this technique to extend memory storage times by orders of magnitude, computation within such subspaces has been scarce. Here, we demonstrate the realiz...
متن کاملNoise-induced dephasing in neutron interferometry
Decoherence phenomenona in a neutron interferometer are analyzed by simulation of the effects of an environment with magnetic noise fields. Basic calculations and experiments show the validity and limitations of this model system. In particular, loss and recovery of the interference pattern with controllable noise sources in both interferometer arms are discussed in detail. In addition, the dec...
متن کاملExperimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 107 15 شماره
صفحات -
تاریخ انتشار 2011